Curso de Engenharia Mecânica promove palestras com professor visitante Jon Selig

02/08/2017 09:29

O Laboratório de Robótica Raul Guenther (Lar) do Departamento de Engenharia Mecânica da Universidade Federal de Santa Catarina (UFSC) promove palestras ministradas pelo professor visitante Jon Selig (London South Bank University, UK). O especialista em métodos geométricos aplicados à robótica vem a Florianópolis em parceria entre o Conselho Nacional das Fundações Estaduais de Amparo à Pesquisa (Confap) e a Royal Academy of Engineering (Reino Unido). Além das palestras, o professor Selig estará disponível entre 3 e 9 de agosto para visitas e discussões.

Programação:

Colóquio de Matemática: Dual Quaternions and the Study Quadric
Data: 4 de agosto, sexta-feira.
Horário: 14 às 15h.
Local: sala 007 – Anfiteatro – Departamento de Matemática – CFM.
Mais informações no site.

This talk begins by looking at the familiar topic of quaternions and how they are used to represent rotations in space.  This is then extended to dual quaternions and how they can be used is an analogous way to represent rigid-body displacements in 3D.  This leads naturally to the specification of the Study quadric as a  model for the group manifold of the group SE(3) of rigid-body displacements (proper isometrics of R^3).  In the remainder of the talk some linear and quadratic subspaces of the Study quadric will be discussed along with their geometric significance and use in Robot kinematics.

Palestra: Robot Dynamics using Screw Theory
Data: 8 de agosto, terça-feira.
Horário: 14h30 às 15h30.
Local: Auditório Teixeirão – Departamento de Engenharia Elétrica – CTC.

After briefly recalling the concepts of twists and wrenches the equation of motion for a single rigid body in an inertial frame of reference is introduced.    To study the dynamics of a serial robot arm the wrenches acting on a single link are considered.  It is then a fairly simple matter to find the equations of motion for such a machine.  It is also useful to transform the equations of motion into expressions involving the robot’s joint angles  and their derivatives.  The  coefficients that occur in this form of the equations of motion have fairly simple expressions in terms of the inertias of the robot’s links and joint axes.

Mais informações com o professor Daniel Martins pelo e-mail  ou pelo telefone (48) 3721-4010.